Astronomers Unscramble Einstein Ring in ALMA Image
ALMA’s Long Baseline Campaign produced spectacular images of the distant, gravitationally lensed galaxy called HATLAS J090311.6+003906, otherwise known as SDP.81.

New analyzes of these images reveal details never before seen in a galaxy so remote, including phenomenally massive yet…

ALMA’s Long Baseline Campaign produced spectacular images of the distant, gravitationally lensed galaxy called HATLAS J090311.6+003906, otherwise known as SDP.81.


New analyzes of these images reveal details never before seen in a galaxy so remote, including phenomenally massive yet concentrated clumps of star-forming material.

The ALMA observations of SDP.81, made at the end of 2014, were enabled by a cosmic effect known as gravitational lensing. A large galaxy nestled between SDP.81 and ALMA is acting as a lens, magnifying the more distant galaxy’s light and warping it into a near-perfect example of a phenomenon known as an Einstein Ring .

In the months following these observations, at least seven groups of scientists have independently analyzed the ALMA data on SDP.81. This flurry of research papers has divulged unprecedented information about the galaxy, including details about its structure, contents, motion, and other physical characteristics.

Since ALMA is an interferometer — a single instrument made up of multiple antennas — it can adjust its resolution by repositioning its antennas. During this observing campaign, ALMA’s antennas were at their greatest separation — up to 15 kilometers apart — providing the highest resolution ever achieved by the telescope. As a result, these new images of SDP.81 have a resolution up to six times greater than those taken in the infrared with the NASA/ESA Hubble Space Telescope.

By using sophisticated models to correct for the distortion produced by the magnifying gravitational lens, the astronomers were able to reveal fine, never-before-seen structure within SDP.81 in the form of dusty clouds thought to be giant repositories of cold molecular gas — the birthplaces of stars and planets.

As a result, the ALMA observations are so sharp that researchers can see clumps of star formation in the galaxy down to a size of about 200 light-years. This is the first time this phenomenon has been seen at such an enormous distance.

“ALMA was designed to be the most powerful telescope of its kind, but by harnessing the magnifying power of this gravitational lens we were able to study a distant and mysterious object in detail that would have been impossible otherwise,” said Todd Hunter, an astronomer at the National Radio Astronomy Observatory and co-author on one of the papers. “This one dataset has spawned an entire series of highly intriguing research, confirming that ALMA offers the astronomical community new avenues to probe the distant universe.”

“The reconstructed ALMA image of the galaxy is spectacular,” says Rob Ivison, co-author of two of the papers and ESO’s Director for Science. “ALMA’s huge collecting area, the large separation of its antennas, and the stable atmosphere above the Atacama Desert all lead to exquisite detail in both images and spectra. That means that we get very sensitive observations, as well as information about how the different parts of the galaxy are moving. We can study galaxies at the other end of the universe as they merge and create huge numbers of stars. This is the kind of stuff that gets me up in the morning!”

Using the spectral information gathered by ALMA, astronomers also measured how the distant galaxy rotates and estimated its mass. The data show that the gas in this galaxy is unstable; clumps of it are collapsing inward and will likely turn into new giant star-forming regions in the future.

Notably, the modeling of the lensing effect also indicates the existence of a supermassive black hole at the center of the foreground galaxy lens [5]. The central part of SDP.81 is too faint to be detected, leading to the conclusion that the foreground galaxy holds a supermassive black hole more than 200-300 million times the mass of the Sun.

The number of papers published using this single ALMA dataset demonstrates the excitement generated by the potential of the array’s high resolution and light-gathering power. It also shows how ALMA will enable astronomers to make more discoveries in the years to come, also uncovering yet more questions about the nature of distant galaxies.

Related posts:


About Earth Changes Media w/ Mitch Battros

Mitch Battros is a scientific journalist who is highly respected in both the scientific and spiritual communities due to his unique ability to bridge the gap between modern science and ancient text. Founded in 1995 – Earth Changes TV was born with Battros as its creator and chief editor for his syndicated television show. In 2003, he switched to a weekly radio show as Earth Changes Media. ECM quickly found its way in becoming a top source for news and discoveries in the scientific fields of astrophysics, space weather, earth science, and ancient text. Seeing the need to venture beyond the Sun-Earth connection, in 2016 Battros advanced his studies which incorporates our galaxy Milky Way - and its seemingly rhythmic cycles directly connected to our Solar System, Sun, and Earth driven by the source of charged particles such as galactic cosmic rays, gamma rays, and solar rays. Now, "Science Of Cycles" is the vehicle which brings the latest cutting-edge discoveries confirming his published Equation.
This entry was posted in Uncategorized and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s